Математическая индукция - Definition. Was ist Математическая индукция
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Математическая индукция - definition

МЕТОД МАТЕМАТИЧЕСКОГО ДОКАЗАТЕЛЬСТВА, КОТОРЫЙ ИСПОЛЬЗУЕТСЯ, ЧТОБЫ ДОКАЗАТЬ ИСТИННОСТЬ НЕКОТОРОГО УТВЕРЖДЕНИЯ ДЛЯ ВСЕХ НАТУРАЛЬНЫХ ЧИСЕЛ
Принцип математической индукции; Метод математической индукции; Полная индукция; Полная математическая индукция; Доказательство по индукции
  • 300px

Математическая индукция         

весьма общий способ математических доказательств и определений. Индуктивные доказательства основаны на так называемом принципе М. и., являющемся одной из основных математических аксиом. Пусть, например, требуется доказать для любого натурального (целого положительного) числа n формулу:

1 + 3 + 5 + ... + (2n - 1) = n2 (1)

При n = 1 эта формула даёт 1 = 12. Чтобы доказать правильность формулы при любом n, допускают, что её уже удалось доказать для некоторого определённого числа N, то есть предполагают, что

1 + 3 + 5 + ... + (2N - 1) = N2. (2)

Далее, опираясь на сделанное допущение, пытаются доказать правильность формулы (1) для числа на единицу большего, то есть для n = N + 1. В данном случае достаточно присоединить к сумме в левой части равенства (2) ещё одно слагаемое: (2N + 1); тогда и правая часть равенства должна увеличиться на (2N +1) и, следовательно,

1 + 3 + 5 + ... + (2N - 1) + (2N + 1) = N2 + (2N + 1) = (N + 1)2.

Но тот же результат получится, если в формуле (1) заменить n на N + 1.

Итак, из справедливости формулы (1) при n = N вытекает (каково бы ни было N) её правильность и при n = N + 1. Но при n = 1 формула (1) верна, следовательно, она верна также и при n = 2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, 5 = 4 + 1 и так далее. Так как последовательным прибавлением единицы можно получить (начиная с единицы) любое натуральное число, то формула (1) действительно верна при любом натуральном числе n. Как ни очевидна заключительная часть приведённого рассуждения, она опирается на некоторую аксиому, не сводимую только к общим законам логики, но выражающую одно из основных свойств натуральных чисел. Общая формулировка этой аксиомы такова.

Принцип М. и. Пусть: 1) число единица обладает свойством А; 2) из того, что какое-либо натуральное число n обладает свойством А, вытекает, что и число n + 1 обладает свойством А. При таких условиях любое натуральное число обладает свойством А.

В разобранном выше примере свойство А числа n выражается так: "для числа n справедливо равенство (1)". Если принцип М. и. принят в качестве аксиомы, то каждое отдельное доказательство, опирающееся на этот принцип, следует рассматривать как чисто дедуктивное. При доказательстве [например, формулы (1)], основанном на этом принципе, не происходит заключения от частного к общему, так как одна из посылок (сам принцип М. и.) по меньшей мере столь же обща, как и заключение.

Принцип М. и., сформулированный выше, служит, как было показано, для доказательства математических теорем. Помимо этого, в математике употребляются ещё так называемые индуктивные определения. Таково, например, следующее определение членов un геометрической прогрессии с первым членом а и знаменателем q:

1) u1 = a,

2) un+1 = unq.

Условия 1) и 2) однозначно определяют члены прогрессии un для всех натуральных чисел n. Доказательство того, что это действительно так, может быть основано на принципе М. и.; в данном случае можно, однако, непосредственно получить выражение un через n:

un = aqn-1.

Принцип М. и. можно заменить равносильными ему предложениями, например таким: если подмножество М множества всех натуральных чисел N содержит 1 и вместе с любым своим элементом m содержит и m + 1, то М = N.

МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ         
общий способ математического доказательства или определения некоторого свойства А для всех натуральных n, основанный на заключении от n к n+1. Математическая индукция состоит из двух этапов: а) установление А для некоторого начального n0; б) обоснование перехода от n к n+1.
Математическая индукция         
Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n+1 — шаг индукции, или индукционный переход.

Wikipedia

Математическая индукция

Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 {\displaystyle 1}  — база (базис) индукции, а затем доказывается, что если верно утверждение с номером n {\displaystyle n} , то верно и следующее утверждение с номером n + 1 {\displaystyle n+1}  — шаг индукции, или индукционный переход.

Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.

Was ist Математ<font color="red">и</font>ческая инд<font color="red">у</font>кция - Definition